Аналитика

Как визуализация данных помогает принимать правильные решения

Визуализация данных с помощью Power BI

Содержание:

  1. Стандартные инструменты аналитики
  2. Возможности визуализации данных
  3. Примеры отчетов в Power BI
  4. Загрузка данных в Power BI
  5. Заключение

Автор: Константин Найчуков, эксперт по работе с платным трафиков в eLama.

Соавтор: Дмитрий Кожедубов, менеджер проектов в eLama.

Стандартные аналитические системы (Google Analytics, Яндекс.Метрика) предоставляют данные в отчетах в виде таблиц. Такое представление подходит для детализированной информации и точных значений. Но таблицы не раскрывают историю и не позволяют быстро увидеть самое важное. Чтобы представлять информацию в более удобном виде, используйте инструменты визуализации данных. В этой статье расскажем, как сделать отчет нагляднее с помощью Power BI.

Стандартные инструменты аналитики

Типичный отчет в Метрике — таблица с данными или линейная диаграмма, в которой показана история кампании. В диаграмму можно добавить несколько показателей. Почти так же она выглядит и в Google Analytics. Только начинающим специалистам может казаться, что Метрика и Analytics визуально сильно отличаются. В целом это почти одно и то же: таблица или линейная диаграмма:

Отчет в Яндекс Метрике

Возможности визуализации данных

Power BI позволяет визуализировать данные и сделать их гораздо нагляднее. У Power BI удобный, интуитивно понятный интерфейс для моделирования и визуализации данных, особенно для тех кто, привык работать в Excel.

Инструмент позволяет подключить разные источники данных, многие в один клик. В галерее системы доступно множество инструментов визуализации разных типов отчетов. Специалисты могут работать как в облаке, так и в приложении на десктопе.

Примеры отчетов в Power BI

Разберем на примере, как сделать отчет нагляднее. Если посмотрим на данные в табличном виде, то складывается ощущение, что план не выполняется, все плохо и кого-то нужно лишить премии:

Пример отчета в Power BI

Но если представить данные в виде следующей диаграммы, где столбцы — это фактические значения, а линейная диаграмма — это плановые значения, то становится очевидно, что картина не такая уж и плохая:

Линейная диаграмма в Power BI

Да, план не выполняется, но значения близкие. Общая динамика говорит о том, что усилия прилагаются и, возможно, лишать людей премий в данной ситуации — не самое правильное решение.

Рассмотрим второй пример таблицы, где показаны клики, транзакции и выручка по разным категориям. Мы можем отсортировать эту таблицу по убыванию выручки. Станет понятно, что категории, которые остались в таблице наверху, продаются лучше:

Пример таблицы в PowerBI

Но если преобразовать таблицу в пузырьковую диаграмму, где X=клики, Y=транзакции, а размер пузырька — это выручка, то станет ясно, что одна категория определяет развитие всего интернет-магазина. Остальные категории не могут с ней равняться. Чтобы отчетливо это увидеть, нужна визуализация данных:

Пузырьковая диаграмма PowerBI

В таблице может казаться, что работают хорошо 3 категории или больше. Но в диаграмме видно, что только одна.

Возьмем другой пример. Как распределяется выручка между категориями в таблице:

Распределение выручки между категориями в таблице

На диаграмме все становится очевидно:

Выручка на диаграмме

Последний столбец — общая выручка. Первые 3 столбца показывают, как выручка распределяется по категориям.

На следующей таблице видно, какие ключевые слова приносят транзакции в рекламной кампании. Данные можно отсортировать по убыванию совершенных транзакций (сколько было продаж):

Ключевые слова транзакции

Если сделать дерево категорий, то мы гораздо быстрее поймем, что всего 2 ключевые фразы обеспечивают эффективность рекламной кампании, а остальные влияют на нее гораздо меньше:

Влияние ключевых слов на рекламную кампанию

Загрузка данных в Power BI

Сложность работы с Power BI заключается в том, что стандартными инструментами нельзя загрузить данные для интернет-маркетинга. Например, выгрузить не сэмплированные данные из Google Analytics или подключить Метрику просто по номеру счетчика не получится. Существуют кастомные коннекторы, например, в виде скриптов на языке программирования R, которые позволяют правильно подключить такие источники к Power BI, но они не построят за вас модель данных, не свяжут клики из рекламных систем с сессиями в веб-аналитике и так далее.

Сервисы выгрузки данных помогают быстро перейти к анализу данных и создать собственный отчет в Power BI. Они сами собирают статистику из рекламных систем и веб-аналитики, связывают их между собой, строят модель данных и отдают все это в готовом виде в Power BI.

Один из таких сервисов — Genreport. Он автоматически обновляет данные, включая обновления задним числом (например, Яндекс может вернуть деньги за клики, которые посчитал недействительными, и данные в отчете обновятся за уже прошедшую дату).

Genreport предоставляет готовую модель данных, специалист может сразу приступить к визуализации и использовать шаблоны отчетов, созданные экспертами. Шаблоны можно изменять, чтобы сделать их удобными и понятными для себя. Genreport — бесплатный сервис. Это простое и доступное решение для тех, кто начинает работать с аналитикой и визуализацией данных.

Шаблон отчета для маркетолога
Шаблон отчета для маркетолога

Это пример отчета маркетолога, которому не надо глубоко погружаться в аналитику. В отчете можно оценить эффективность рекламы в Директе и Ads, выполнение KPI в динамике, а также рост или снижение показателей.

При визуализации важно учитывать, что мы хотим понять из отчета и на чем сфокусироваться. Например, руководителю достаточно видеть стратегические показатели бизнеса без детализации, в то время как специалисту по контекстной рекламе нужны строить более детализированные отчеты с разбивкой по различным сегментам и со множеством метрик. Поэтому шаблоны в Genreport разделены на различные уровни: “для маркетолога”, “руководителя”, “аналитика” и т.д.

Заключение

Power BI дает возможность маркетологам и специалистам по платному трафику визуализировать информацию и строить наглядные отчеты. Инструмент помогает анализировать данные в удобном и понятном виде, отслеживать динамику изменений и оценивать важные показатели.

5/5 (6)

Пожалуйста, оцените статью

Автор: Ольга Каптиева
Помогаю читателям найти блог Carrot quest.
Подключите Carrot quest
Первые 14 дней бесплатно

Похожие статьи

Carrot quest для вашей команды
Инструменты Carrot quest помогают разным командам решать их ежедневные задачи
Узнать больше
Подписаться